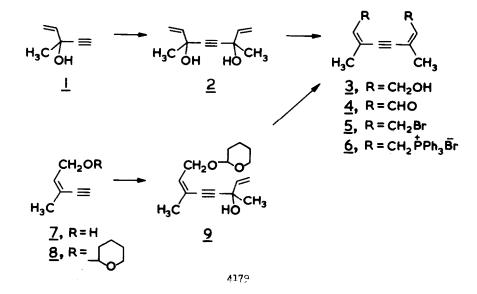
ANNELATED 12π-ELECTRON SYSTEMS. THE SYNTHESIS OF A DIMETHYLBENZOMONODEHYDRO[12]ANNULENE, DIMETHYLMONODEHYDRO[12]ANNULENO[<u>c</u>]THIOPHENE, -[c]FURAN AND -[b]FURAN ¹

Richard H. Wightman and Franz Sondheimer

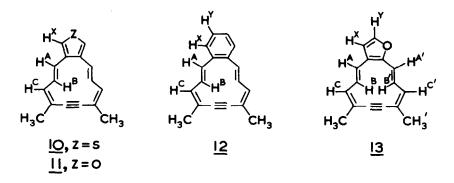

Chemistry Department, University College,

Gordon Street, London WClH OAJ.

(Received in UK 6 October 1975; accepted for publication 9 October 1975)

It is interesting to study the effect produced by annelation of a 6π -ring onto macrocyclic "antiaromatic" (4<u>n</u>) and "aromatic" (4<u>n</u>+2) π -systems. We now describe syntheses of the novel annelated monodehydro[12]annulenes 10, 11, 12, and 13,² in which a conjugated 12-membered ring is fused to thiophene, furan and benzene. Related bisdehydro[14]annulenes are discussed in the following Communication.³

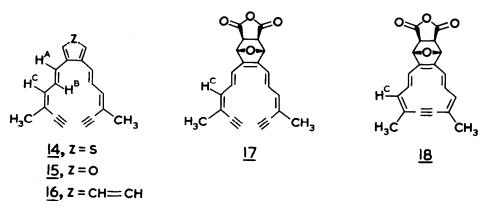
Treatment of 3-methylpent-l-en-4-yn-3-ol (<u>1</u>)⁴ with 2 mol equiv of EtMgBr and then with 1 mol equiv of methyl vinyl ketone (MVK) in $C_6 H_6$ -Et₂O led to the crude diol <u>2</u> (stereoisomeric mixture), which was rearranged in Et₂O with 4N H₂SO₄ at 25° for 12 hr. The resulting diol <u>3</u> (<u>ca</u> 15% yield based on <u>1</u>), mp 105-106;⁵ was expected to possess the thermodynamically favoured "<u>cis,cis</u>" (Z,Z) stereochemistry,⁶ and this was confirmed by the ¹H-nmr spectrum of the derived



dialdehyde $\underline{4}$ and by its further transformations. Alternatively, the diol $\underline{3}$ could be obtained in <u>ca</u> 20% over-all yield from the vitamin A intermediate "<u>cis</u>"-3-methylpent-2-en-4-yn-1-ol ($\underline{7}$) $\overline{6,7}$ through successive conversion to the tetrahydro-2-pyranyl ether $\underline{8}$, treatment with BuLi and then MVK (1 mol equiv each), reaction of the product <u>9</u> with AcOH, Ac₂O and <u>p</u>-toluenesulphonic acid ⁸ (20°, 90 min), and finally saponification of the resulting <u>3</u> diacetate with K₂CO₃ in MeOH.

Oxidation of the diol $\underline{2}$ in CH₂Cl₂ with MnO₂ at 20° for 2 hr yielded 85% of the rather unstable dialdehyde $\underline{4}$ as pale yellow needles, mp 78-80°. Bromination of $\underline{2}$ in Et₂O with an excess of PBr, at -5° to 20° led to the dibromide $\underline{5}$, which on treatment with 2 mol equiv of PPh₃ in DMF at 40° for 3 hr gave the bisphosphonium salt $\underline{6}$ in 55% yield (based on $\underline{2}$) as a solvate with 2 molecules of DMF (determined from the ¹H-nmr spectrum).

Reaction of thiophene-3,4-bis(methylenetriphenylphosphonium bromide) 3 with BuLi (2 mol equiv) in THF at 20° for 1 hr, and treatment of the resulting bisylide with the dialdehyde 4 (1 mol equiv) at 20° for 1 hr yielded 6.5% 9 of the dimethylmonodehydro[12]annuleno[<u>c</u>]-thiophene <u>10</u> 10a as yellow plates, mp 157-158°; <u>m/e</u> 238.083 (calcd 238.082); λ_{max} (Et₂0) 248 (£ 13,700), 285 (28,100), <u>ca</u> 365 nm (1400); ¹H-nmr (CDCl₃, 100 MHz) τ 2.64 (dd, <u>J</u> = 16, 7.5 Hz, H^B], 2.91 (d, <u>J</u> = 16 Hz, H^A), 3.01 (s, H^X), 3.78 (d, <u>J</u> = 7.5 Hz, H^C), 8.10 (s, CH₃). Similar reaction of furan-3,4-bis(methylenetriphenylphosphonium chloride) ¹¹ with BuLi and then with <u>4</u> led to 5% 9 of the dimethylmonodehydro[12]annuleno[<u>c</u>]furan <u>11</u> 10b as yellow needles, mp 131-132° dec; <u>m/e</u> 222.103 (calcd 222.104); λ_{max} (Et₂0) 240 (£ 21,900), 254sh (25,700), 271 (35,100), 333 nm (4300); ¹H-nmr (CDCl₃, 100 MHz) τ 2.11 (dd, <u>J</u> = 16.5, 8.5 Hz, H^B), 2.79 (s, H^X), 3.53 (d, <u>J</u> = 16.5 Hz, H^A), 3.72 (d, <u>J</u> = 8.5 Hz, H^C), 8.12 (s, CH₃).


Treatment of the bisphosphonium salt <u>6</u> with BuLi (2 mol equiv) in Et₂O, followed by reaction with <u>o</u>-phthalaldehyde (1 mol equiv) gave 4% ⁹ of the dimethylbenzomonodehydro[12]annulene <u>12</u>,^{10c} which could also be obtained (2.5% yield) by treatment of the dialdehyde <u>4</u> and <u>o</u>-xylylenebis-(triphenylphosphonium bromide) ¹² (1 mol equiv each) with LiOEt (2 mol equiv) in EtOH. Substance <u>12</u> formed orange plates, mp 143-144°, <u>m/e</u> 232.124 (calcd 232.125), λ_{max} (Et₂O) 233sh (*E* 14,900), 258 (34,100), 274 (39,400), <u>ca</u> 380 nm (850). The ¹H-nmr spectrum of <u>12</u> (CDCl₃, 100 MHz) was remarkably simple, consisting of a 4H two-line signal at τ 2.33, 2.36 (H^A, H^B), a 4H singlet at 2.92 (H^X, H^Y), a 2H multiplet at 3.90 (H^C), and a 6H singlet at 8.19 (CH₃). The assignments are based on the ¹H-nmr spectra of the dideuterio derivatives <u>12</u> (D instead of H^A)¹³

and <u>12</u> (D instead of \mathbb{H}^{B}).¹⁴ Although polybenzo[12]- and -[16]annulenes are well known,¹⁵ 12 is the first example of a macrocyclic [4n]annulene annelated to only one benzene ring.

Treatment of <u>6</u> with BuLi (2 mol equiv) in THF, followed by reaction with furan-2,3dicarboxaldehyde ¹⁶ (1 mol equiv) led to 0.6% ⁹ of the dimethylmonodehydro[12]annuleno[<u>b</u>]furan <u>13</u> ^{10d} as red crystals, mp 100-102°; <u>m/e</u> 222.104 (calcd 222.104); λ_{max} (Et₂0) 256 (<u>6</u> 33,300), 276sh (25,500), 372 nm (1670); ⁴H-nmr (CDCl₃, 100 MHz) τ -0.12 (dd, <u>J</u>=17, 10 Hz, H^B), 1.86 (dd, <u>J</u>=17, 6.5 Hz, H^B), 2.22 (d, <u>J</u>=17 Hz, H^A), 2.91 (d, <u>J</u>=2 Hz, H^Y), 3.50 (d, <u>J</u>=17 Hz, H^{A'}), 3.94 (d, <u>J</u>=2 Hz, H^X), 4.09 (d, <u>J</u>=10 Hz, H^{C'}), 4.20 (d, <u>J</u>=6.5 Hz, H^C), 8.32 (broad s CH₃, CH₃'). This assignment is based on the ¹H-nmr spectrum of the monodeuteric derivative <u>13</u> (D instead of H^A), prepared from <u>6</u> and furan-2-carboxaldehyde-3-deuteriocarboxaldehyde.¹⁷ Attempts to prepare the thiophene analogue of <u>13</u> by a similar route were unsuccessful.

We believe the <u>trans</u> double bonds of <u>10</u>, <u>11</u>, and <u>12</u> to be conformationally mobile on the ¹H-nmr time-scale, although their spectra were essentially unchanged on cooling to -60°. Support for this view is provided by the fact that <u>both</u> the H^A and H^B resonances are shifted downfield as compared to the "open" models <u>14</u>, ³ <u>15</u>, ¹⁸ and <u>16</u>, ¹⁹ as would be expected for fluxional paratropi molecules. In <u>13</u>, the H^{A'}, H^{B'} trans double bond appears to be fixed in the indicated conformatio as shown by the unusually low field H^{B'} resonance (τ -0.12) and the magnitude (10 Hz) of J_{B',C'}; the H^A, H^B trans double bond in <u>13</u> seems to be mobile, as the H^A and H^B resonances are similar and move towards each other and then cross over on cooling (-67°: H^A, τ 1.64; H^B, τ 2.32).

The best ring current probe in this type of dehydroannulene is provided by the H^C and CH, ¹H-nmr resonances, since these protons must be external. The resonances of these protons in <u>10</u>, <u>11</u>, <u>12</u>, and <u>13</u> are given in Table 1, together with those of the tetraalkylated monodehydro[12]annulene <u>18</u>,²⁰ and of the "open" models <u>14-17</u>.^{3,18,19,20} It is evident that all the monodehydro-[12]annulenes are paratropic, the ring current of the macrocycle being reduced in the order tetraalkylannulene <u>18</u> > annuleno[<u>b</u>]furan <u>13</u> > benzannulene <u>12</u> > annuleno[<u>c</u>]thiophene <u>10</u> \triangleq annuleno[<u>c</u>]furan <u>11</u>. This finding, as well as the effect on the ¹H-nmr resonances of the 6π systems caused by annelation of the 12-membered rings in <u>10</u>, <u>11</u>, <u>12</u>, and <u>13</u>, are discussed in the following Communication.³

<u>Acknowledgments</u>. We thank the Science Research Council for financial support, Hoffmann-La Roche, Basel, for a gift of <u>7</u>, and Mr. R.R. Jones for providing furan-2,3-dicarboxaldehyde.

Compound	H ^C	CH,
<u>18</u> , alkyl <u>13</u> , [b]furan	4.27 4.20, 4.09 (H ^C ')	8.35 8.32
<u>12</u> , benzo	3.90	8.19
<u>10, [c]thiophene</u>	3.78	8.10
<u>11, [c]furan</u> <u>14-17, models</u>	3.72 3.51 - 3.62	8.12 7.98 - 8.04

Table 1. H^C and CH, ¹H-Nmr Resonances of Annelated and Alkylated Monodehydro[12]annulenes, and of their "Open" Models, in CDC1, at 100 MHz, 27° (t Values; Internal Standard, TMS).

REFERENCES AND NOTES

- Unsaturated Macrocyclic Compounds. CXV. For part CXIV, see T.M. Cresp and F. Sondheimer, J. Amer. Chem. Soc. <u>97</u>, 4412 (1975).
- 2. No particular conformation is implied in these formulae, unless otherwise indicated.
- 3. R.R. Jones, J.M. Brown, and F. Sondheimer, following Communication.
- Prepared from methyl vinyl ketone and LiC≣CH in liquid NH, (see L. Brandsma, "Preparative Acetylene Chemistry", Elsevier, Amsterdam, 1971, pp. 73-74.
- 5. The spectral properties of all new compounds were in accord with the assigned structures.
- 6. Inter al, see W. Oroshnik, J. Amer. Chem. Soc. 78, 2651 (1956).
- J. Cymerman, I.M. Heilbron, and E.R.H. Jones, <u>J. Chem. Soc.</u> 90 (1945); O. Isler, W. Huber, A. Ronco, and M. Kofler, <u>Helv. Chim. Acta</u> <u>30</u>, 1911 (1947).
- 8. See J.H. Babler and D.O. Olsen, Tetrahedron Lett. 351 (1974); J. Org. Chem. 40, 255 (1975).
- 9. Isolated by chromatography on silica gel.
- IUPAC name: (a) 7,10-dimethyl-8,9-didehydrocyclododeca[c]thiophene; (b) 7,10-dimethyl-8,9-didehydrocyclododeca[c]furan; (c) 8,11-dimethyl-9,10-didehydrobenzocyclododecene; (d) 7,10-dimethyl-8,9-didehydrocyclododeca[b]furan.
- 11. J.A. Elix, M.V. Sargent, and F. Sondheimer, <u>J. Amer. Chem. Soc.</u> <u>92</u>, 973 (1970).
- 12. C.E. Griffin, K.R. Martin, and B.E. Douglas, <u>J. Org. Chem</u>. <u>27</u>, 1627 (1962); C.E. Griffin, and J.A. Peters, <u>ibid.</u> <u>28</u>, 1715 (1963).
- Obtained by the reaction of <u>6</u> with dideuteriophthalaldehyde (CDO instead of CHO; derived from phthalic acid bisdiethylamide by reduction with LiAlD₄; see F. Weygand and D. Tietjen, <u>Chem. Ber.</u> <u>84</u>, 625 (1951).
- 14. Obtained by the reaction of <u>o</u>-xylylenebis(triphenylphosphonium bromide) with <u>4</u> (CDO instead of CHO; derived from <u>4</u> by LiAlD₄ reduction and subsequent MnO₂ oxidation).
- 15. For references, see P.J. Garratt and K. Grohmann in "Houben-Weyl, Methoden der Organischen Chemie", Vol V, Part 1d, Georg Thieme Verlag, Stuttgart, 1972, p.527, Table 6.
- 16. M. Zaluski, M. Robba, and M. Bonhomme, <u>Bull. Soc. Chim. France</u> 1838 (1970); R.R. Jones private communication.
- 17. Obtained by R.R. Jones from 3-bromofuran-2-carboxaldehyde according to Zaluski <u>et al</u>. (ref. 16), using DMF-<u>d</u> instead of DMF.
- 18. P.J. Beeby, R.T. Weavers, and F. Sondheimer, Angew. Chem. 86, 163 (1974).
- 19. R.T. Weavers and F. Sondheimer, <u>Angew. Chem.</u> <u>86</u>, 167 (1974).
- 20. R.H. Wightman and F. Sondheimer, unpublished experiments.